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ABSTRACT 

The paper proposes a stochastic representation of earthquake 
ground motion as a supplement and an alternative to conventional re-
sponse spectra for purposes of seismic analysis and design. In the 
model the strong motion duration captures the essential transient 
character of earthquake ground motion, while the spectral density func-
tion G(w) represents its "equivalent stationary" frequency content. 
This representation permits effective use of methods of random vibra-
tion to predict seismic response of many types of structures, and 
yields analytical predictions of response spectra. It provides a start-
ing point for modeling the space-time variation of earthquake ground 
motion and offers an attractive format for bringing recent geophysical 
information about source parameters and ground motion frequency content 
to bear on earthquake engineering practice. It also facilitates account-
ing for the effects of local geology on ground motion. Finally, the 
proposed representation is well suited for use in seismic risk analysis 
and quantification of reliability under seismic loads. 

INTRODUCTION: THE CASE AGAINST RESPONSE SPECTRA  

The most common representation of earthquake ground motion for 
seismic analysis and design is the response spectrum. Response spec-
tra are plots of the maximum seismic response of a linear oscillator 
in function of the natural frequency for different damping ratios. They 
permit the designer to assess the severity of ground shaking directly 
in terms of the response of different alternative (simple linear) sys-
tems. The response spectra reflect the frequency content and the dura-
tion of the ground motion, as well as the way the motion is filtered 
by a single-degree linear oscillator. 



The information content and the usefulness of response spectra 
are much reduced when the system of interest does not act as a simple 
linear oscillator. For linear multi-degree systems, one must resort 
to approximate rules for modal combination of response spectra ordin- 
ates at the different natural frequencies. Since the time interval 
during which strong ground shaking lasts is not explicitly accounted 
for, any phenomenon that is sensitive to motion duration tends to be 
poorly predicted by procedures based on response spectra, e.g., when 
inelastic action, low-cycle fatigue or liquefaction dominate behavior. 
It is also cumbersome to modify response spectra where it is necessary 
to account for local soil effects. 

Further complications arise when seismic analysis must proceed on 
the basis of "design" response spectra which are, in a crude sense, 
envelopes of the response spectra corresponding to different types of 
possible ground motions (with different magnitudes and distances, and 
hence durations and spectral parameters). For example, an unknown de-
gree of conservatism enters into the analysis of multi-degree linear 
systems when the modal ordinates of "design" response spectra - un-
likely to occur simultaneously - are combined. 

Another important weakness stems from the fact that the maximum 
ground acceleration (or the "zero-period" acceleration) is widely used 
as a scaling factor for acceleration time histories and response spec-
tra. This has led to the development of "standard" response spectra 
(such as the Newmark-Blume-Kapur spectra) obtained from statistical 
analysis of a suite of recorded accelerograms scaled to a common maxi-
mum acceleration. It is well known, however, that the maximum accelera-
tion is a rather unreliable indicator of ground motion severity for 
many kinds of systems, as it is very sensitive to (poorly known details 
of) the high frequency content of the ground motion. The high fre-
quency components of the ground motions tend to be weakly correlated in 
space, and their effect on actual structures (with spatially extended 
foundations) may be much smaller than would be inferred from recorded 
accelerograms and their response spectra. 

To date, it has been common in earthquake engineering to focus 
attention on the time history of ground acceleration (and its response 
spectrum) at a given location in space. This is a logical consequence 
of the fact that much of our knowledge about earthquake ground motion 
comes from recorded accelerograms, and that engineering attention has 
traditionally focused on "point" facilities for which it seemed reason-
able to ignore "local" spatial variation of ground motion in seismic 
analysis and design. However, for spatially extended structures such 
as pipelines and embankments, or structures on widely-separated multiple 
supports or on large foundation slabs, the spatial variation of ground 
motion may be just as important as the temporal variation. Empirical 
strong-motion data from closely spaced arrays of seismographs is now 
gradually becoming available, and engineers are increasingly directing 
their attention to the effects of earthquakes on spatially distributed 
systems. It is evident that the response spectra format of motion repre-
sentation is poorly suited to meet the challenge of accounting (for engi-
neering purposes) for critical new information about spatial variability 
of earthquake ground motion. 
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The main purpose of this paper is to substantiate a proposal for 
the use of a direct stochastic representation of earthquake ground 
motion (in terms of the ground motion spectral density function,G(w), 
and the duration of strong shaking,$) in earthquake engineering prac-
tice. While essentially equivalent to response spectra in reference 
to single-degree linear systems, the proposed stochastic representa-
tion leads to improved predictions of the response of linear multi-degree 
systems and the behavior of a variety of nonlinear systems, including 
those sensitive to low cycle fatigue and liquefaction. It also pro-
vides a tractable format for (a) dealing with the effect of spatial 
variation of ground motion, (b) accounting for the influence of local 
geology, and (c) relating ground motion frequency content (and duration) 
to basic earthquake source parameters and source-to-site distance. 

EMPIRICAL BASIS FOR THE PROPOSED MODEL  

The Fourier amplitude spectrum of an accelerogram a(t) is the abso-
lute value of its Fourier transform: 

 

fa(t) 
e-iwt 

dt 
( 0 

  

A(w) = a(t) e -cut  dt (1) 

    

in which w = frequency of vibration (rad/sec), i = /-1, and to  = length 
of the digitized accelerogram (in seconds). The squared Fourier ampli-
tude spectrum A2(w), indicates how the "total energy" in the earthquake 
motion is distributed over frequency, and its integral over all frequen-
cies is directly related to the total motion "energy" I

o
, or the Arias 

Intensity (1), as follows: 

t
o 

1 = a2(t) dt = a2(t) dt = A2 (0 v 0  To  A2 (W)d (11 (2) 

The equality in the center of Eq. 2 is Parseval's relation, while the 
equality on the right side results from the fact that A(w) is an even 
function of frequency since a(t) is real. 

Due to the limited duration and the randomness of the phasing of 
contributing sinusoids, Fourier amplitude spectra of recorded ground mo-
tions appear highly variable, that is, the size and location of peaks 
and valleys are quite sensitive to computational details such as the 
choice of time and frequency intervals. The expected value of A2(w), 
obtained by appropriate local averaging or smoothing over frequency, is 
directly related to the spectral density function G(w) and the duration 
of strong motion s, as follows (2): 

1 
G(w) = A2(w) (3) 

G(w) is the one-sided (w > 0) spectral density function which indicates 
how the "power" (energy per unit time) in the ground motion is distribu- 
ted over frequency. The strong-motion duration s is the time interval 



over which the "total energy" in the motion is distributed uniformly. 

A well-known property of G(w) is that its integral over all fre-
quencies equals the variance a' of the ground acceleration during the 
interval of strong motion: 

a2 . w : G(w) d 

The strong-motion duration s and the r.m.s. acceleration a of recorded 
accelerograms can be obtained in terms of the "Arias Intensity" IQ = 
the time integral of the squared accelerations over the entire record 
length) and the absolute maximum acceleration, amax  from the following 
system of two equations and two unknowns (s and 711): 

Io = s crt 

amax = r a 

(5)  

(6)  

where r is a dimensionless peak factor. The first equation states that 
the motion "intensity" IQ  is distributed uniformly, at constant average 
power a2, over the duration s. The second equation asserts that the 
r.m.s. acceleration and the peak acceleration are linked (probabilistic-
ally) by the peak factor r, which in turn depends very weakly, but in a 
predictable way, on s and on the frequency R2  (see Eq. 11). A sim-
plified definition of s can be obtained by replacing r by an average 
value (r . 2.65) obtained from empirical study of a large set of strong-
motion accelerograms (2). Replacing a by amax/2.65 in Eq. 5 yields the 
following (simplified) definition of strong-motion duration: 

' (- i• 
s (2.65)2(10/a:

ax
7 I 0/a

4ax) (7)  

Once the duration s has been estimated from a record, its r.m.s. strong-
motion acceleration may be found from the relationship c=v1;7F. 

In reality, the intensity of the ground motion first increases and 
then decays relatively slowly (rather than abruptly), and this can be 
modeled by a deterministic time-dependent variance function q2(t) (which 
has a "box-car" shape in the idealized model presented here). To achieve 
the dual goal of (a) preserving the total intensity I0  and (b) maintain-
ing the relation between amax and the maximum of a(t), it is desirable 
that the maximum of a2(t) be equal to a2, and that the integral of a2(t) 
over the (longer) duration remain equal to I = a2s. Similarly, if one 
chooses to model the evolution of the frequency content of the ground 
motion with time, or to make duration dependent on frequency, it is desir-
able to maintain the time-integrated motion intensity within each fre-
quency band, sG(w) Aw.These more involved stochastic descriptions which 
account for the "evolution" of the frequency content with time or for the 
frequency dependence of the duration of (different components of) the 
ground motion, while within the state-of-the art of stochastic modeling, 
present major obstacles when it comes to practical stochastic structural 
response analysis, adequate empirical backup for the models, and extension 
to account for spatial correlation decay. 

(4) 



Limited statistical studies were carried out based on a data set 
of 140 horizontal components of 70 western United States strong-motion 
records corresponding to different even/site pairs (2). Eleven sites 
(22 records) were classified as "rock" sites, and 59 sites (118 records) 
as "soil" sites. The mean duration for all records is 9.3 sec, and the 
standard deviation is 8.7 sec. For the 32 records with a "near-field" 
designation, the mean and the standard deviation are 6.3 and 5.5 sec, 
respectively. For the "far-field" records, the mean is 10.2 sec, and 
the standard deviation is 9.4 sec. For the records on "rock", the mean 
duration is 5.1 sec, and for the records on "soil", it is 10.1 sec. 
Some further information, including various regressions on distance and 
magnitude, may be found in References 2 and 3. 

THE SPECTRAL DENSITY FUNCTION: PROPERTIES AND MODELS  

The "Point" Spectral Density Function: Parameters Related to Moments  

The spectral density function G(w) expresses how the ground accel-
eration intensity at a given point in space is distributed over frequency. 
We have seen that, for actual records, G(w) is directly connected to the 
"Arias intensity" I and, through the relationship I = es, to the r.m.s. 
ground acceleration . Of course, from basic theory of stationary ran-
dom processes, the principal property of G(w) is that its integral over 
frequency equals a2. (Throughout this paper attention is restricted to 
a single component of ground motion.) Scaling G(w) with respect to 02  
yields the unit-area spectral density function, 

g(w) = 
a

G(w) (8) 

and the normalized cumulative spectral distribution function: 

f(w) = r g(u) du (8) 
0 

It is useful to note the analogy between the unit-area s.d.f. and the 
probability density function (p.d.f.) of any random variable: both are 
nonnegative and have unit area. The moments of the spectral density 
function G(w) are: 

Ai  = wi  0(w)dw (10) 

in which Ai  is the ith moment, and A = a2. An array of spectral param-
etersi = 1, 2, ... is defined a, follows: 

Oi  = (Xi/A0)
1/i 

i = 1, 2, ... (11) 

is analogous to the mean and 522  to the root-mean-square (r.m.s.) of 
a random variable. A convenient measure of the spread of the dispersion 
of the s.d.f. about its center frequency is the bandwidth factor 



     

= VI -xx0,2 = Ai - / 02 (12) 

which is dimensionless, always lies between 0 and 1, and increases with 
increasing spectral bandwidth. These spectral parameters embody very 
useful information about patterns of fluctuation in the time domain; for 
interpretation and practical use in earthquake engineering, see Ref. 4. 

Effect of Local Spatial Averaging  

Earthquake ground motion varies in space as well as with time. 
From an engineering standpoint, the distances involved may range from 
tens of centimeters to several kilometers to cover the dimensions of 
the base of strong-motion instruments as well as foundations for build-
ings, bridges, dams, or components of lifeline systems. Initial results 
from ongoing research indicate that analytical models of homogeneous 
random field theory (5) can be used to represent the space-time charac-
ter of ground motion in a (locally) homogeneous random medium (say, a 
particular type of bedrock or a layer of alluvial soil) during the 
strong phase of an earthquake. In a wide alluvial basin, waves will tend 
to propagate in all directions, and the resulting random field of ground 
motions (say, a specified component of horizontal motion) may exhibit an 
isotropic spatial correlation function. (A more general "ellipsoidal" 
random field is characterized by a correlation function with ellipsoidal 
iso-correlation contours). In addition, it may be appropriate (espec-
ially in the near field) to introduce a deterministic phase lag to ac-
count for partially predictable wave front propagation. 

Some relevant new results (5) of random field theory are now summar-
ized, with emphasis on the effect of spatial averaging on the"point" 
s.d.f. G(w). A two-dimensional homogeneous space-time process x(u,t) may 
be characterized by temporal and spatial scales of fluctuation, 9r  and Eit 
respectively, and by a scalar space-time correlation measure a = coteu, 
where ca  is a dimensionless constant greater than or equal to one. Decom-
position of the process in the frequency domain leads to the introduction 
of the frequency-dependent spatial scale of fluctuation e,11, which measures 
the spatial correlation decay of individual sinusoidal contributions to 
the (composite) ground motion. It is found that e decreases monotonic-
ally with frequency; its largest value occurs at tRe frequency origin 
(where it equals a/et)andit varies approximately in proportion to w 1  at 
frequencies exceeding the "corner frequency".11"-  . The temporal scale of 
fluctuation et is related to the unit-area spectral density function, 
g(w) = G(w)/o2, as follows: 

 

et = 
7g
(0) = i(S

o.2 (13) 

(The definition in terms of the spectrum at w  = 0 applies to theoretical 
models of the s.d.f. and characterizes the underlying stationary stochas-
tic process; owing to the limited duration"s"of actual accelerograms, it 
is appropriate to estimate et based on the unit-area s.d.f. evaluated in 
the neighborhood of, say, w= 411/s). For earthqiake ground acceleration, 
the unit-area spectral density function g(w) tends to be dispersed over 
a relatively wide band of frequencies. For such processes, the temporal 
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scale of fluctuation 0
t  contains information about the behavior of 

g(w) at both high and low frequencies: at low frequencies g(w) xeLtm, 
while g(w) must all but vanish at frequencies exceeding 27r/Ot. 

The spatial scale of fluctuation eu  measures ground motion corre-
lation distances in space. Assuming the wave patterns travel (randomly 
in all directions) at an apparent propagation velocity V, one might ex-
pect eu  = V 0. As we shall see, in the next section, for the Kanai-
Tajimi s.d.f. with parameters wg  = 4.ff and g = 0.3, one obtains et = 0.07 

seconds; taking V = 4000 m/s then yields 0u  = 280 m. Empirical analysis 
of data from the SMART-I strong-motion accRlerograph decay is presently 
underway to obtain empirical estimates of 0". 

The frequency-dependent spatial scale of fluctuation eu  and the 
"composite" spatial scale eu are related as follows (5): 

eu = f' ,u 
g(w) 

 dw 
uw  ‘w, (14) 

A crude estimate for th "corner frequency" S21  (below which ew  zc0
u  

and above which eu cc -')of wide-band processes is Q11 0.3 7/0t. 

It is shown in Ref. 5 that the basic information eu  and c  suffices 
to calculate "admittance functions" YD(w) which should be multiplied by 
the "point" spectral density function G(w) in order to obtain the spec-
tral density function GD(w) of the local spatial average of the compon-
ent of the ground motion over an interval D (characterizing for example, 
the dimension of a rigid foundation slab): 

GD(w) = G(w) YD(w) (15) 

The function Yo(w) depends on the ratio D/eu  and the corner frequency 
m. Its principal effect is to suppress the high frequency content of 
the "point" s.d.f. G(w). It is also possible to generate cross-spectral 
density functions of seismic inputs at two different support points, or 
of two local spatial averages of the random field of ground motions over 
different regions in space. Although the above results apply to the 
case of a single spatial coordinate, similar results are available for 
homogeneous random fields and averaging regions in two and three dimen-
sions (5). 

Some Useful Models for G(w)  

Model 1: The simplest physically realizable form of G(w) corresponds 
to a band-limited white noise, for which the spectral density is constant 
from 0 to wi , as follows: 

= G 0 < w < wi  

G(w) (16) 
= 0 

• 
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The variance a' equals the integral over frequency of GM. For .band-
limited noise, we have 

a2 6 wi  

The temporal scale of fluctuation is 

(17)  

,t G _ (0) , 
= Tr --2— Tr/ 41, (18)  

Model 2: The following model seeks to account for the fact that the 
decay of wave amplitude with distance depends on frequency ( anelastic 
attenuation): 

G(w) = Gr  e-Wwr (19) w > 0 

where wr  = characteristic frequency which varies in inverse proportion 
to the epicentral distance. The parameter Gr  depends on the earthquake 
magnitude and incorporates geometric decay of amplitudes with distance. 
The ground motion variance is 

= f G(w) dw = Gr  wr (20) 

and the temporal scale of fluctuation is 

et Tr/w
r 

These expressions are identical to those of Model 1. 

(21)  

Model 3: Based on Kanai's study (6) of the frequency content of a lim-
TM-Taber of recorded strong ground motions, Tajimi (7) suggested the 
following widely used form for the spectral density function of ground 
motion: 

[1 +4Cg g2  (wh2)]Gc, 

2 2 

[1  - (w Ng  2] 4c4 (w/ 9) 

Sample functions of this process can be obtained by filtering "ideal 
white noise" (w0  = . in Eq. 16)through a simple oscillator with 
natural frequency wn  and viscous damping co. These parameters may be 
interpreted as the Ipredominant ground frequency" and the "effective 
ground dampin* respectively. Of course, the effective "local soil 
filter" may be multiplied by any of the models for the bedrock 
motion spectral density function. Also, other soil filters may be more 

0(0= (22)  
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appropriate, in particular, those that connect the motion at bedrock 
outcropping to the motion at the surface of (or at a point within) a 

soil stratum, accounting consistently for both radiation and material 
damping (and whose parameters are strain-compatible). 

The variance of the Kanai-Tajimi spectrum is 

7Gow 
a2  = G(w) dw - (1 + 4c2) 

4c 

and the temporal scale of fluctuation is 

4
t _ 

c 
g  e   

w
9 
 (1 + 4c9) 

For example, with a typical set of parameter values, Wg  = 47 and cg  = 0.3, 
one obtains et 0.07 sec. 

Sources of Information  

Recorded Accelerograms: Spectral density functions and their parameters 
rin particular, the variance a' and the scale et) can be estimated from 
actual records. Recall that the parameter a is closely related to the 
recorded peak ground acceleration, a 4x = 2.65a. Consequently, the focus 
is the unit-area s.d.f. g(w). Only limited statistical analysis has been 
done to date to establish a comprehensive information base containing 
attenuation laws and measures of uncertainty . Data processing of strong-
motion array recordings is just beginning to provide information about 
variability and spatial correlation of spectral content at closely spaced 
recording stations. Bolt et al. (8) propose a correlation function 
which decays in stages; it is a weighted sum of two exponential func-
tions, with correlation decay distances of about 300m and 10,000m, 
respectively. 

Geophysical Models: The bedrock acceleration spectral density Gr  
(or Go) can be reiated to the seismic moment Mo and the corner freq-
uency wo  of the Brune "source spectrum" (9, 10). The effect of epi-
central distance on the bedrock s.d.f. is in part independent of 
frequency (geometric attenuation) and in part dependent on frequency 
(anelastic attenuation); these effects may be incorporated through 
the parameters Gr  (or Go) and wr, respectively. Specific numerical 
values in the attenuation laws are different for different seismic 
regions, e.g., western versus northeastern North America. In work 
submitted to the U. S. Nuclear Regulatory Commission, the writer (11) 
developed a model for G(w) based on information about displacement 
"source spectra" and distance-dependence from northeastern North 
American events (12-14); response spectra are derived by means of 
random vibration analysis, first for motion on bedrock and then 
for motion "filtered" through a local soil overburden; finally, the 
major sources of uncertainty and the variability of the predicted 

(23)  

(24)  
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response spectra are quantified. 

Local Geology: Bedrock motion tends to have relatively uniform spectral 
content over a relatively wide band of frequencies. Within this freq-
uency range, the shape of the ground motion s.d.f. at the top of a soil 
deposit will depend on the layer configuration and dynamic soil proper-
ties. "Basin effects" can also be incorporated in this type of represen-
tation. 

Inverting Known Response Spectra: Methodology based on random vibration 
Theory is available to predict response spectra corresponding to a given 
probability of being exceeded (4). Inverting this relationship yields 
an estimate of G(w) if values are assumed for the duration s and the 
exceedance probability. Pfaffinger (15) recently derived the spectral 
density functions corresponding to Housner's average response spectra 
(16) and the standard Newmark-Blume-Kapur response spectra (17). 

USE OF THE MODEL IN SEISMIC ANALYSIS AND DESIGN  

Prediction of Multi-Degree System Response  

The simplest seismic analysis procedures are based directly on 
response spectra. To predict linear elastic multi-degree system 
response by the response spectrum approach, individual modal maxima 
are combined, usually by calculating the square root of the sum of 
the squares (SRSS), to provide an estimate of the multi-degree system 
peak response. The method provides no information about the degree 
to which actual responses might deviate from the predicted value. 
Similar approximate procedures have been proposed to predict the 
response of light equipment in buildings and certain nonlinear systems 
directly from a set of specified smooth response spectra. The pro-
posed stochastic representation (i.e., sudden exposure, for "s" seconds, 
to stationary Gaussian excitation with given s.d.f.) permits response 
predictions with equal ease and superior reliability compared to pro-
cedures based directly on the response spectrum (4). Whenever system 
behavior is highly sensitive to ground motion duration, the proposed 
motion representation has the obvious advantage of accounting explicitly 
for duration. 

Random vibration methodology provides approximate closed-form pre-
dictions (fractiles of the distribution of) seismic response of multi-
degree linear systems (4). In fact, the form of the expression for the 
multi-degree system response variance motivates improved rules for modal 
combination that are of immediate benefit in the conventional response 
spectrum approach. (It suffices to replace the modal standard deviations 
by the response spectra ordinates). The writer first suggested such a 
"stochastic modal superposition" (SMS) procedure that fully accounts 
for cross-correlation between modal responses (4). An alternate pro-
cedure (referred to as "complete quadratic combination",or CQC) was 
suggested by Der-Kiureghian (18); its derivation assumes white noise 
excitation, ignores the transient nature of the seismic response, and 
neglects secondary effects attributable to differences in the peak 
factors of multi- and single-degree responses. If the response is 
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stationary and the input is white noise, the two procedures are iden-
tical, as they are simply based on two different ways of expanding the 
multi-degree response variance. 

It should be noted that the methodology to predict response spectra 
and multi-degree system response when the excitation s.d.f. is pre-
scribed also enables evaluation of the effect of local spatial averaq 
LI on system response; it suffices to replace the input point" s.d.f. 
G(w) by the s.d.f. of the local spatial average, e.g., GD(w) given by 
Eq. 15. Similarly, random field models of the earthquake ground motion 
provide the input for random vibration analysis of structures with 
multiple supports and spatially extended foundations. 

A common analysis procedure is step-by-step time integration based 
on one or more recorded or synthetic accelerograms. The "G(w)-s" sto-
chastic representation is a suitable starting point for ground motion 
simulation. As mentioned before, simulated accelerograms can be made 
more realistic in the variation of motion intensity-versus-time or the 
time-dependence of the frequency content, provided the empirical con-
nections to A(w), Io  and amax  (inherent in the basic representation) 
are maintained. 

Relation to Seismic Risk and Design Criteria  

An important issue is how ground motions should be characterized 
for seismic design purposes. If the "design event" magnitude and source-
to-site distance are specified, conventional attenuation laws yield 
estimates of the peak ground motion amplitudes. From the peak ground 
acceleration, a can be estimated (roughly a 1. amax/2.65). A crude 
estimate of the quantity e may be obtained from the relationship 
e' :4 2 (vmax/amax)  for ground motion on bedrock (a ax T is in cm/sec` . 
and vmax  is the peak ground velocity in cm/sec.) imilarly, the strong-
motion duration may be estimated as a function of magnitude and dis-
tance. Of course, local soil conditions may change these values to 
some extent. 

If an occurrence probability is associated with each magnitude-
distance pair, and hence with the corresponding duration and spectral 
parameters (more generally, the "random field" characteristics) and 
the associated seismic response predictions, it becomes possible to 
obtain estimates of annual exceedance probability for some particular 
response quantity of interest. To limit the computations, one could 
arrange the magnitude-distance pairs into a limited number of clusters 
which together contribute the major part of the seismic risk. A reas-
onable compromise may be to specify two or three "design" conditions—
preferably with associated likelihoods — each defined in terms of a 
specified magniture and distance. 

A less cumbersome(but more compromising)alternative is to specify 
a "design" spectral density function that may contain artificially 
high variance contributions in a very wide band of frequencies. Such 
a s.d.f. may be obtained by inverting "design" response spectra such 
as the mean-plus-one-standard deviation Newmark-Blume-Kapur response 
spectra. 



CONCLUSIONS  

It has been argued in this paper that the "G(w)-s" stochastic 
model of earthquake ground motion is superior to the conventional 
representation based on the response spectrum. The principal 
features of the proposed model are: 

(i) G(w) provides direct information about the frequency 
content of (the strong shaking phase of) ground motions; 

(ii) the model explicitly accounts for motion duration; 

(iii) it has a firm empirical basis as G(w), a' and s are 
clearly connected with A(w), amax  and Io; 

(iv) geophysical models of ground motion provide information 
about the dependence of G(w) on basic earthquake source 
and wave propagation parameters: 

(v) it facilitates incorporating the effect of local 
geology on earthquake motions; 

(vi) it leads to improved predictions of structural response 
for all types of systems and yields predictions of level 
crossing frequencies and cumulative damage measures asso-
ciated with fatigue or liquefaction; 

(vii) it permits extending ground motion models to account for 
(local) spatial variation; 

(viii) it is compatible with conventional representations of 
earthquake ground motion such as the response spectrum 
and provides a convenient starting point for generating 
synthetic accelerograms. 
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